Protein homology detection by HMM?CHMM comparison

نویسنده

  • Johannes Söding
چکیده

MOTIVATION Protein homology detection and sequence alignment are at the basis of protein structure prediction, function prediction and evolution. RESULTS We have generalized the alignment of protein sequences with a profile hidden Markov model (HMM) to the case of pairwise alignment of profile HMMs. We present a method for detecting distant homologous relationships between proteins based on this approach. The method (HHsearch) is benchmarked together with BLAST, PSI-BLAST, HMMER and the profile-profile comparison tools PROF_SIM and COMPASS, in an all-against-all comparison of a database of 3691 protein domains from SCOP 1.63 with pairwise sequence identities below 20%.Sensitivity: When the predicted secondary structure is included in the HMMs, HHsearch is able to detect between 2.7 and 4.2 times more homologs than PSI-BLAST or HMMER and between 1.44 and 1.9 times more than COMPASS or PROF_SIM for a rate of false positives of 10%. Approximately half of the improvement over the profile-profile comparison methods is attributable to the use of profile HMMs in place of simple profiles. Alignment quality: Higher sensitivity is mirrored by an increased alignment quality. HHsearch produced 1.2, 1.7 and 3.3 times more good alignments ('balanced' score >0.3) than the next best method (COMPASS), and 1.6, 2.9 and 9.4 times more than PSI-BLAST, at the family, superfamily and fold level, respectively.Speed: HHsearch scans a query of 200 residues against 3691 domains in 33 s on an AMD64 2GHz PC. This is 10 times faster than PROF_SIM and 17 times faster than COMPASS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein homology detection by HMM–HMM comparison

Motivation: Protein homology detection and sequence alignment are at the basis of protein structure prediction, function prediction and

متن کامل

Continuous HMM and Its Enhancement for Singing/Humming Query Retrieval

The use of HMM (Hidden Markov Models) for speech recognition has been successful for various applications in the past decades. However, the use of continuous HMM (CHMM) for melody recognition via acoustic input (MRAI for short), or the so-called query by singing/humming, has seldom been reported, partly due to the difference in acoustic characteristics between speech and singing/humming inputs....

متن کامل

Analyzing Team Actions with Cascading HMM

While team action recognition has a relatively extended literature, less attention has been given to the detailed realtime analysis of the internal structure of the team actions. This includes recognizing the current state of the action, predicting the next state, recognizing deviations from the standard action model, and handling ambiguous cases. The underlying probabilistic reasoning model ha...

متن کامل

Comparative Study of Continuous Hidden Markov Models (CHMM) and Artificial Neural Network (ANN) on Speaker Identification System

This paper reports a comparative study between continuous hidden Markov model (CHMM) and artificial neural network (ANN) on text dependent, closed set speaker identification (SID) system with Thai language recording in office environment. Thai isolated digit 0-9 and their concatenation are used as speaking text. Mel frequency cepstral coefficients (MFCC) are selected as the studied features. Tw...

متن کامل

Discrete or Continuous-Time Hidden Markov Models for Count Time Series

In Hidden Markov Models (HMM) the probability distribution of response Yt (∀t = 1, 2, . . . , T ) at each observation time is conditionally specified on the current hidden or latent state Xt. The sequence of hidden states follows a first order time-homogeneous Markov chain. Discrete time or continuous time HMM are respectively specified by T ⊆ N or T ⊆ R (from now on DHMM and CHMM). In this wor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 21 7  شماره 

صفحات  -

تاریخ انتشار 2005